Technology and Labor Regulations

Alberto Alesina
Harvard University CEPR and NBER

Joseph Zeira
The Hebrew University of Jerusalem and CEPR

First draft: June 2006
Revised: November 2007*

* We thank Daron Acemoglu, Olivier Blanchard, Francesco Caselli, Giovanni Di Bartolomeo, Giorgio di Giorgio, Gene Grossman, Sharon Haddad, Larry Katz and Francis Kramarz for useful comments. Filipe Campante and Sarit Weisbrod provided excellent research assistantship. Joseph Zeira thanks the Israel Science Foundation for financial support.
Abstract

Many low skilled jobs have been substituted away for machines in Europe, or eliminated, much more so than in the US, while technological progress at the “top”, i.e. at the high-tech sector, is faster in the US than in Europe. This paper suggests that the main difference between Europe and the US in this respect is their different labor market policies. European countries reduce wage flexibility and inequality through a host of labor market regulations, like binding minimum wage laws, permanent unemployment subsidies, firing costs, etc. Such policies create incentives to develop and adopt labor saving capital intensive technologies at the low end of the skill distribution. At the same time technical change in the US is more skill biased than in Europe, since American skilled wages are higher. In the last few years some partial labor market reforms in Europe may have started to slow down or even reverse this trend.
1. Introduction

It is close to impossible to find a parking attendant in Paris, Frankfurt or Milan, while in New York City they are common. When you arrive even in an average Hotel in an American city you are received by a platoon of bag carriers, door openers etc. In a similar hotel in Europe you often have to carry your bags on your own. These are not simply trivial traveler’s pointers, but indicate a deeper and widespread phenomenon: low skilled jobs have been substituted away for machines in Europe, or eliminated, much more than in the US, while technological progress at the “top” i.e. at the high-tech sector, is faster in the US than in Europe.¹ Why?

This paper suggests that an important difference between Europe and the US that leads to such technological differences lies in their different labor market policies. While US labor markets have been deregulated and labor unions there were significantly weakened, most European countries have kept wage inequality low through a host of labor market regulations, like binding minimum wage laws, permanent unemployment subsidies, firing costs, etc.² These policies created incentives to develop and adopt labor saving capital-intensive technologies at the low end of the skill distribution. At the same time technical progress in the US has been more skill biased than in Europe, since American skilled wages have been higher.

There are only a few ways to model differential technology adoption across countries. One is to assume that technology adoption is costly, like Parente and Prescott (1995). This approach may help in understanding gaps between rich and poor countries, but it does not fit our case, since if adoption costs in Europe were higher, we should observe less technical progress in all sectors, which is not the case. Basu and Weil (1998) suggest instead that technology adoption depends on supplies of factors of

¹ Acemoglu (2003a) supplies interesting empirical support to this observation of differential technological levels, as discussed below.
² In the last few years there have been some reforms of labor markets in several European countries. How these will unfold remains to be seen, but job creation in Europe has immediately picked up in response to those changes. More on this below. See also Alesina and Giavazzi (2007) for discussion.
productions, as different technologies fit better different capital-labor ratios. But this approach as well is more applicable to the rich and poor countries, which differ significantly in their capital abundance, but cannot be applied to study differences between Europe and the US. We therefore resort to a third approach, following Champernowne (1963) and Zeira (1998, 2007), which models technological change as substituting labor by machines. According to this approach new technologies reduce labor costs but require purchasing machines, namely increasing capital costs. Hence, such technological innovations are invented and adopted only if wages are sufficiently high, so they reduce the cost of production.

In this paper we apply this approach to a model of two sectors, skilled and unskilled, and we show that the wage in each sector determines the degree of technology in that sector. The model allows the two places, which we identify as “the US” and as “Continental Western Europe” (Europe in short), to differ in their supplies of skilled and unskilled workers and in their labor market policies. Greater labor regulation in Europe, in the form of unemployment benefits, and/or minimum wage laws and/or firing costs leads to reduction in the skill premium in Europe, and as a result to less skill-biased technical change, but also to more technical progress in the unskilled sector. We also calculate the welfare gains and losses from labor regulation, losses due to reduced output and gains due to social insurance.

3 Note that although the new technologies substitute labor by capital, the two factors of production are still highly complementary. Producing some tasks by machines instead of labor enables workers in the remaining tasks to be more productive. For example, an accountant who uses a computer for calculations she did manually in the past becomes more productive as a result.

4 In most models a new technology enables production of the same amount with less of both inputs.

Many economists have attributed the large rise in the skill premium in the US to skill biased technical change. This paper suggests that both the rise of wage inequality and the skill biased technical change could have been to some extent a result of a third development, namely a deregulation in labor markets in the US. It therefore raises the hypothesis of some reverse causality, where the rise of wage inequality in the US induced skill biased technical change. At the very least the technological revolutions in the US would have been seriously impeded if the labor market environment would have been more like in Europe, namely with stronger unions and more regulation. The paper also suggests that these opposite policies in Europe led to wage compression and as a result to less skill biased technical change and more technical change in low skilled sectors.

Much recent research has examined the effect of the different labor market policies in the US and in Europe on the divergence between the two areas in their economic performance after the 1970s. Higher unemployment in Europe relative to the US was attributed by many economists to these different labor market policies. Unemployment has been just part of the story. The number of work hours per person has declined steadily in Europe (especially in France, Germany and Italy) since the mid 1970s relative to the US.

The closest paper to ours is Acemoglu (2003a), that in a nice way lays the empirical basis for our analysis. Acemoglu shows that the differences in the skill premium between the US and Europe cannot be fully accounted to by the differences in labor supplies of skilled and unskilled in the two regions and not by the differences in labor market policies as well. He therefore concludes that there

8 This decline has been in part lower participation in the labor force, in part longer vacations, and in part shorter work weeks. See Prescott (2004) Blanchard (2004), Alesina Glaeser and Sacerdote (2005) and Rogerson (2007) for work on this point. More on this below.
must be differences in technology adoption between Europe and the US that affect the demands for the
two types of workers. Acemoglu then raises a hypothesis similar to us, that the different labor market
policies have led to differences in technology adoption, but the theoretical mechanism he offers is very
different than ours, as described in Section 4 below. Our paper can therefore be viewed as continuing
Acemoglu (2003a) by supplying a general theory of technology adoption that accounts for the
differences between the two areas and also by supplying some empirical support to this theory.

The paper is organized as follows. Section 2 presents the basic model and derives the basic
results of the paper. Section 3 presents some aspects of the equilibrium and contains a welfare analysis
of the model. Section 4 discusses the model, compares it to the literature and discusses extensions to
other types of labor market regulations. Section 5 discusses some empirical implications of the model.
The last section concludes and the appendix contains mathematical derivations of some results.

2. A Model of Technology and Labor Regulation

2.1 The Set-Up

Consider a discrete time economy with overlapping generations. Each individual is born to a single
parent, lives two periods and has a single offspring. Hence, population is fixed over time and we
assume that each generation consists of a continuum of size 1. Individuals supply one unit of labor in
first period of life and they can work as skilled if educated, or as unskilled if they are not. To an
individual born to an educated parent learning is costless, but if born to an uneducated parent learning
is infinitely costly. As a result the groups of skilled and unskilled are fixed over time.9 Also assume
that educated people can work as unskilled, while people without education cannot work as skilled.10
Denote by L_n the share of unskilled and by L_s be the share of skilled, so that: $L_n + L_s = 1$. In addition to

9 This assumption can be relaxed to get mobility between skilled and unskilled. The main results of the model are not
altered.
10 This assumption only warrants that skilled wages are higher or equal than unskilled wages.
being skilled or unskilled each person has individual efficiency e, which is assumed to be random,
distributed uniformly between zero and 1, and independent of whether the individual is skilled or
unskilled. There is a single final good in the economy, used for consumption and for investment.
People derive utility from consumption of this final good in the two periods of life where $\rho > 0$:\(^{11}\)

\[
\log(c_1) + \frac{\log(c_2)}{1 + \rho}.
\]

Note that the choice of an overlapping-generations assumption is not crucial for the main
results of the paper, but is helpful. The positive results could be derived in a model of infinitely lived
individuals as well, but in that case we could not calculate the “ex-ante expected utility” because all
individuals would have already known their efficiency level. Hence, it makes no sense in such a case
to calculate the welfare gains of the insurance element in the labor market regulation. We could also
present the analysis in a model of non-overlapping-generations, but in that case we would have only
borrowers in our world, to invest in capital, and no lenders.

The single final good is produced by two intermediate goods, the skilled good S and the
unskilled good N, using the following production function:

\[
Y = S^\alpha N^{1-\alpha}.
\]

The skilled good is produced by infinite tasks, or infinite intermediate goods $i \in [0,1]$ according to the
following Cobb-Douglas production function:

\[
\log S = a + \int_0^1 \log s(i) di.
\]

Each i can be produced by one of two potential technologies. One is manual, where a unit of i is
produced by 1 efficiency unit of skilled labor. The second technology is industrial and it produces one
unit of i by a machine of size or cost $k(i)$. Capital, namely machines, depreciates fully within 1 period.

\(^{11}\) The log utility assumption matters only for the calculation of optimal welfare and is discussed below.
Development or adoption of a new technology, which is imbedded in a machine, is costless. Hence, the only cost of the industrial technology is the cost of the machine. It is assumed that this cost \(k(i) \) is rising with \(i \).\(^{12}\) To solve the model analytically we use the following specification:

\[
(4) \quad k(i) = \frac{1}{1 - i}.
\]

The unskilled good is produced by a similar production function:

\[
(5) \quad \log N = a + \int_0^1 \log n(i) di.
\]

Each unskilled intermediate good is produced either by one efficiency unit of unskilled labor or by a machine of size \(k(i) \), where the function \(k \) is the same as in (4).\(^{13}\)

The economy is open to capital mobility and small, so that the world interest rate is given and equal to \(r \), and the gross interest rate is \(R = 1 + r \). The economy trades only in the final good, and not in skilled, unskilled and intermediate goods.

Those without jobs are entitled to an unemployment compensation of \(v \) times the wage of unskilled, where \(v < 1 \), which is financed by a tax on income, at a fixed rate \(t \). The tax is paid on the transfer payments as well and the government budget is balanced.

2.2 Technology Adoption

Denote by \(w_n (w_s) \) the gross wage rate per efficiency unit of an unskilled (skilled) worker. First, a skilled intermediate good is produced by machines, if:

\[
w_s \geq Rk(i) = \frac{R}{1 - i}.
\]

\(^{12}\) This is just an ordering assumption and has no effect on the analysis.

\(^{13}\) We can assume that the sectors are not symmetric and that the cost of a machine that replaces a skilled worker is \(b_s/(1-i) \), while the cost of a machine that replaces an unskilled workers is \(b_n/(1-i) \). The qualitative results of the model remain the same.
Hence, all skilled intermediate goods \(i \leq f_s \) are produced by machines, where the technological frontier for skilled workers, \(f_s \), is determined by:

\[
1 - f_s = \frac{R}{w_s}.
\]

Similarly:

\[
1 - f_n = \frac{R}{w_n}.
\]

Let \(P_S \) be the price of the skilled good, and \(p_s(i) \) be the price of the intermediate good \(i \) in the production of \(S \). On the demand side we can use the first order conditions of profit maximization of producers of the final good, the skilled and the unskilled good. On the supply side prices of intermediate goods in the two sectors are equal to production cost, due to free entry and constant returns to scale. Hence:

\[
p_s(i) = \begin{cases}
R & \text{if } i \leq f_s, \\
\frac{R}{1-i} & \text{if } i > f_s.
\end{cases}
\]

Prices of intermediate goods in the unskilled sector are similar. Equating demand and supply prices leads, as shown in the appendix, to the following equilibrium condition:

\[
af_s + (1 - \alpha)f_n = a + \varepsilon - \log R,
\]

where \(\varepsilon = \alpha \log \alpha + (1 - \alpha) \log(1 - \alpha) \). We call equation (9) the “goods markets equilibrium condition.” It describes a trade-off between the two technology frontiers.

14 Note that (6) and (7) require that wages are greater than \(R \). If not \(f = 0 \) and there is no industrialization. We do not dwell on this case as it is clearly remote from the advanced economies we analyze.
Denote the wage ratio between the skilled and unskilled by \(I \), as it reflects the degree of wage inequality in the economy. From conditions (6) and (7) we get that this wage inequality is related to the technology frontiers in the two sectors:

\[
I = \frac{w_s}{w_n} = \frac{R}{1 - f_s} = \frac{1 - f_n}{1 - f_s}.
\]

Hence, we get the “labor market constraint:”

\[
f_n = 1 - I + If_s.
\]

Together, the equations (9) and (10) determine the equilibrium values of technologies adopted and the wages in each sector given the wage ratio \(I \), as shown in Figure 1. The \(G \) curve describes the goods market equilibrium condition (9), while the \(L \) curve describes the labor market constraint (10). Since skilled workers can always switch and work as unskilled the wage ratio \(I \) satisfies: \(1 \leq I < \infty \).

Figure 1: Determination of Technology Frontiers
A calculation of the equilibrium in Figure 1 yields the two technology frontiers:

\[f_s = 1 - \frac{1 + \log R - \varepsilon - a}{\alpha + (1 - \alpha)I}, \]

and:

\[f_n = 1 - I \frac{1 + \log R - \varepsilon - a}{\alpha + (1 - \alpha)I}. \]

A sufficient condition for no corner solution at any wage inequality \(I \) between 1 and infinity is that the basic productivity parameter \(a \) should satisfy:

\[\alpha + \log R - \varepsilon \leq a \leq 1 + \log R - \varepsilon. \]

As wage inequality \(I \) increases, the curve \(L \) shifts down, reducing \(f_n \) and increasing \(f_s \). Hence wage inequality induces technical adoption of machines in the skilled sector but reduces it in the unskilled sector. As a result, the wage of skilled workers rises and the wage of unskilled workers declines. A change in productivity \(a \) instead shifts the curve \(G \). Hence, a country with higher productivity adopts more machines in both sectors, skilled and unskilled.

As shown above reducing wage inequality raises the wage of unskilled, but also lowers the wage of skilled. The reason is the complementarity between the skilled and unskilled goods in the production of final goods (2). Raising wages of unskilled reduces their input and thus reduces the unskilled good. This lowers the marginal productivity of the skilled good, its price and the skilled wage as well. Thus, many policies that raise the unskilled wage in order to reduce wage inequality end up in lowering the wages of the skilled as well.

2.3. Equilibrium Wage Inequality

A worker chooses to work only if her earnings exceed the welfare payment. Hence an unskilled works only if: \(ew_n (1 - t) \geq vw_n (1 - t) \), namely if \(e \geq v \). The unskilled rate of unemployment is

\[u_n = v. \]
A skilled supplies labor if: \(ew_s (1-t) \geq vw_n (1-t) \). Hence:

\[
(15) \quad u_s = \frac{v}{I}.
\]

Note that this is voluntary unemployment. Involuntary unemployment is described below when we discuss minimum wages and firing costs.

We next derive the wage ratio \(I \) from the labor market equilibrium conditions for skilled and unskilled. The appendix shows how these conditions are derived from equating supplies and demands for labor in terms of efficiency units of skilled labor:

\[
(16) \quad \frac{L_s}{2} \left(1 - \frac{v^2}{I^2} \right) = \frac{\alpha RY}{w_s^2},
\]

and of unskilled labor:

\[
(17) \quad \frac{L_n}{2} (1 - \alpha) \frac{RY}{w_n^2} = \frac{(1-\alpha) RY}{w_n^2}.
\]

From these two conditions we derive the equilibrium value of wage inequality \(I \):

\[
(18) \quad I^2 = \frac{\alpha}{1-\alpha} \frac{L_n}{L_s} (1-v^2) + v^2.
\]

Note that \(\alpha L_n / [L_s (1-\alpha)] \geq 1 \). Otherwise the wage ratio is lower than 1 and as a result skilled workers turn to unskilled jobs, which pay a higher wage. That drives wage inequality up to 1, by reducing the actual \(L_s \), which restores the above condition. This condition implies both that wage inequality is greater or equal to 1, and that it depends negatively on the degree of labor market regulation \(\nu \).

2.4. The Effect of Unemployment Compensation

A country with a larger unemployment compensation \(\nu \) has a lower wage inequality \(I \). As a result this country adopts less machines in the skilled sector, namely \(f_s \) is lower, but has more machines in the unskilled sector, namely \(f_n \) is higher. In such a country \(w_s \) is lower and \(w_n \) is higher. The effect of labor
regulation on wage inequality works through the effective supplies of skilled and unskilled labor since unemployment compensation reduces the supply of unskilled by more than the supply of skilled.

3. Equilibrium and Welfare

In this section we complete the description of equilibrium, more specifically we calculate the amounts of capital in the various sectors, aggregate output, output in each sector, and the tax rate. We also try in this section to examine why countries differ in their labor regulation, namely in v.

3.1. Capital across Sectors

Once the two technology frontiers are determined we can calculate the amounts of capital in the various sectors and in the two aggregate sectors. Capital in the skilled sector is:

\[
K_s = \int_0^{\nu_s} s(i) \, di = f_s \frac{P_s S}{R} = \alpha f_s \frac{Y}{R}.
\]

Capital in the unskilled sector is:

\[
K_n = \int_0^{\nu_n} n(i) \, di = f_n \frac{P_n N}{R} = (1-\alpha) f_n \frac{Y}{R}.
\]

If wage inequality declines, due to greater unemployment compensation, capital in the skilled sector K_s is reduced relative to output, while K_n increases relative to output. These are empirical implications that are explored in Section 5. Note also that the positive relationship between wage inequality and the relative capital in the skilled sector is observationally equivalent to capital-skill complementarity.

3.2. Output and the Government Budget

The aggregate unemployment rate is:

\[
u = L_n v + L_s \frac{y}{I} = v \left[1 - L_s \left(1 - \frac{1}{I} \right) \right].\]

\]
Aggregate output is calculated from the labor market equilibrium (16) and is equal to:

\[Y = \frac{L_s}{2\alpha R} \left(1 - \frac{v^2}{I^2} \right) w_s^2. \]

An increase in \(v \) reduces \(I \) and reduces \(w_s \). Hence, labor market regulation \(v \) reduces output and increases unemployment. Note that a balanced budget requires:

\[tY = (L_n u_n + L_s u_s) v w_n = (L_n v + L_s v / I) v w_n. \]

If \(v \) is higher both the unemployment rate is higher and the compensation per unemployed is higher, so that the overall amount of compensation, namely the right hand side of (22), is higher. Since output or income is lower, the tax rate must be higher.

3.3. The Output of Sectors

Knowing the level of aggregate output enables us to calculate the levels of output and of output per worker (labor productivity) in each sector, skilled and unskilled. The output of the skilled sector in terms of the numeraire, which is the final good, is equal to:

\[P_s S = \alpha Y = \frac{L_s w_s^2}{2R} \left(1 - \frac{v^2}{I^2} \right). \]

Since the number of workers in the sector is \(L_s (1 - v / I) \) we get by using (6) that labor productivity in the skilled sector is equal to:

\[\frac{P_s S}{L_s (1 - v / I)} = \frac{R}{2(1 - f_s)} \left(1 + \frac{v}{I} \right). \]

Note that the effect of labor regulation on labor productivity in the skilled sector is mixed. There is a positive effect through \(1 + v / I \), which reflects higher average efficiency of workers. There is an opposite negative effect through \((1 - f_s)^{-2} \), which reflects less skilled technologies. Similarly the labor productivity in the unskilled sector can be calculated to be:
Here the effect of labor regulation is clear cut. It increases labor productivity in the unskilled sector both by raising the average efficiency of workers and also by increasing unskilled-biased technology frontier f_n.

3.4. Welfare Considerations

Consider the ex-ante expected utility of each person at birth, before her efficiency is known, as the correct measure of welfare. This is actually the average utility of skilled and of unskilled in each generation. In the appendix we show that ex-post utility is a linear transformation of the logarithm of net income. We therefore use log income as a measure of indirect utility. As shown in the appendix expected utility of unskilled is:

$$U_n = \log w_n + v + \log(1 - t) - 1,$$

and expected utility of skilled is:

$$U_s = \log w_s + \frac{v}{I} + \log(1 - t) - 1.$$

The effect of increasing v is therefore mixed. On the one hand it has a direct positive effect on welfare, due to reducing the probability of poverty and low income. On the other hand it raises tax payments. Also, increasing welfare raises the unskilled wage, but lowers skilled wage. Hence it has different effects on the two types of workers.

The average welfare within a generation is a reasonable measure for ex-ante welfare, since the government does not transfer income across generations. Average ex-ante expected welfare, with equal weights to all, is equal to:

$$\text{AVG}(U) = L_n U_n + L_s U_s = (1 - L_s)U_n + L_s U_s.$$
We focus on this variable in order to find which level of labor regulation v maximizes average welfare. We then examine whether the difference in labor regulation between Europe and the US can be explained by our model. Since the two countries differ in L_s, they might differ also in their optimal v. Can that explain the observed difference in labor regulation and the resulting difference in wage inequality between the two regions?

The calculation of average utility is quite complicated and we resort to simulations. For that, we must specify reasonable values for the four parameters of the model: productivity a, the gross interest rate R, the share of skilled goods in the production of the final good α, which is also the elasticity of the final good with respect to skilled goods, and share of skilled workers in the population L_s.

Our choice of parameters is guided by our interest in comparing the US and Europe. Assuming that they are similar in interest rates and production parameters, our exercise centers on comparing outcomes across different values of L_s, keeping the other parameters fixed. For values of L_s we choose the percentage of the population between ages 15 and 64 that had completed tertiary education in 1995. Thus for the US $L_s = 0.33$, and for Europe $L_s = 0.17$, where “Europe” is taken to be the average of France, Germany, and Italy.15 $R = 2$ is a realistic interest rate for a period of one generation. To set α note that the ratio of wages of college graduates and of high school graduates in the US has been 1.9 in the late 1990s, as shown by Autor, Katz, and Kearney (2005). We then apply this figure to equation (18) and find that if v is somewhere between 0 and .5 (which is a reasonable range for the US, as it has high participation rate in the labor force) α is between .64 and .69. We therefore set $\alpha = 2/3$ as an intermediate value. Finally, the productivity parameter a is set to satisfy condition (13) for an interior solution: $1.99 \leq a \leq 2.33$. We therefore set $a = \log(8) \sim 2.08$.

15 See Barro and Lee (2001).
Figure 2: Optimal Unemployment Compensation

Figure 2 shows how the level of v that maximizes AVG (U), changes with the amount of skill. Figure 2 is drawn for $L_s \leq 2/3$, as implied by the constraint $\alpha L_s / (1 - \alpha) L_s \geq 1$, which is required by $I \geq 1$. Figure 2 is drawn both for the logarithmic utility function used in the benchmark model, with relative risk aversion of 1, but also for a much lower level of risk aversion of .5. Figure 2 shows that optimal v is positive, namely labor market regulation increases welfare by supplying insurance against being born with low efficiency. Figure 2 also shows that optimal v does not change much with skill, since it is concave. Optimal v fluctuates between 0.4 and 0.61. Figure 2 also shows that optimal v does not depend much on the degree of risk aversion.

The locations of US and Europe on the curve in Figure 2 point at their optimal unemployment compensation. We can use equation (18) to calculate their implied v, namely the unemployment

\[v \text{ (RRA=1)} \]
\[v \text{ (RRA=.5)} \]

16 We can also consider a Pareto-dominating policy, of means tested transfer payment. But such a policy fails if efficiency is not observed when the worker does not work. Then workers with low efficiency prefer to avoid work altogether. Under such moral hazard the policy in the model is indeed optimal.
compensation which yields the observed wage inequality in the country, according to the model. The optimal v for the US should be .58. Its implied v, for a wage ratio of 1.9, is .383. The optimal v for Europe should be .61. Since the wage ratio in Europe is 1.4 according to Brunello, Comi, and Lucifora (2000), its implied v is .943. This simple exercise implies that unemployment compensation in the US is significantly below the optimal while in Europe it is significantly above the optimal. This means that our model cannot explain the differences in labor regulation, or social policies, between the US and Europe. In other words, the different supplies of skill are not the only source of difference between Europe and the US. There are also other explanations, including different degrees of aversion to inequality and different perception of the benefits of social insurance versus market distortions.

4. Discussion and extensions

4.1. Other Forms of Labor Regulation

Unemployment compensation is not the only form of labor market regulation. Amongst the most common other regulations are binding minimum wage floors, and various costs and legal prohibitions of firing workers. In our model these policies yield qualitatively the same results as unemployment compensation, namely they reduce wage inequality, raise unskilled wages, lower skilled wage and thus bias technology toward the unskilled sector.

To study the effect of minimum wages we apply this policy to our basic model from Section 2. Only one assumption needs to be changed, which is the assumption that worker’s efficiency is known to all. Under this assumption all workers with efficiency below the minimum wage are fired. It means that the minimum wage policy hurts all and thus no one should want it. We assume instead that worker’s efficiency is unknown but can be observed by employers for only some of the workers.

17 This is of course a very high and unrealistic figure, but it points to the conclusion that intervention in Europe is very high relative to the US.
18 See Alesina and Glaeser (2004) for more discussion of this point.
Hence only part of the workers who have low efficiency are fired. The appendix shows that in this model a minimum wage regulation reduces wage inequality, since it applies mostly to the unskilled. Therefore the minimum wage regulation induces unskilled bias technology and reduces skill-bias technologies.

The appendix also contains an analysis of the effect of firing costs on wages and technology. It shows that firing costs have a similar effect to that of unemployment benefits or minimum wages. The intuitive reason is that prices of intermediate goods reflect also firing costs and these are relatively larger for unskilled. Thus firing costs reduce the ratio of prices (and wages) between the two sectors. Note that both under minimum wages and under firing costs some workers become involuntarily unemployed. Hence, such policies should usually be accompanied with some welfare payments, or unemployment benefits. In these cases it does not affect the equilibrium if the amount of unemployment benefits is lower than the minimum wage.

All these labor regulations reduce wage inequality. This is also often a direct objective of labor unions and of governments, especially in Europe. Such policies yield similar results to those described above, since setting a bound on wage inequality is equivalent to minimum wages. Another way to understand this issue is to consider a union that acts as a labor monopoly and sets higher unskilled wages. All these deviations from competitive wage inequality lead to unskilled biased technology.

4.2. Induced Innovations or Directed Technical Change

At this point we would like to compare our approach and results to an alternative literature, which also relates technical progress to supplies and prices of factors of production. This literature was originally called ‘induced innovations’, and was pioneered by Kennedy (1964), Samuelson (1965), Nelson and

Phelps (1966) and others, who were the first to treat innovation as endogenous. A recent extension of this literature, which connects it to the scale effect from the endogenous growth literature, is called ‘directed technical change,’ and has been developed mainly by Acemoglu, in Acemoglu (1998), Acemoglu and Zilibotti (2001), Acemoglu (2003b) and other papers.

When applied to our topic of skilled vs. unskilled labor, this literature can be described by use of the following production function:

\[Y = F[A_s L_s, A_u L_u]. \]

\(A_s \) and \(A_u \) are productivities of skilled and unskilled labor respectively. Technical change increases these productivities. This production function implies that technical progress for skilled labor is more profitable and thus higher, if this factor is relatively more abundant and if its price is lower. Hence, the skill-bias of technical change is inversely related to the skill premium. This prediction is opposite to that of our paper, as mentioned already in Acemoglu (2003a). Thus our model and the induced innovation literature have conflicting predictions on the relationship between relative wages and technical change. This shows that while the Acemoglu and Zilibotti (2001) is doing a great job in explaining differences between the North and the South, a different model is required for understanding the differences between Europe and the US.

The intuitive explanation for the difference between the two approaches lies in the different modeling of the relationship between labor and capital. In our model technical change both replaces skill, in intermediates \([0, f]\), and complements it, in intermediates \((f, 1]\), while in the directed technical change model capital only complements skill. This is why the two approaches have opposite predictions on technical progress and wages.

20 This inverse relationship is mitigated by technical change itself that increases the skill premium. But when two countries are compared, as in Acemoglu and Zilibotti (2001), this inverse relationship remains and technical change is skill-biased in the country that has a lower skill premium. This result holds even when the Acemoglu and Zilibotti analysis is applied with some necessary changes to the US and Europe instead of the North and South.
4.3. Standard Factors’ Substitution

A potential criticism on our model could be that empirically it is not different from the standard neoclassical model of substitution between labor and capital. Even if technology is fixed, changes in labor regulation could lead to substitution of labor by capital in the skilled and unskilled sectors. But such an approach misses two important points. One is of course that it does not discuss difference in technology across countries, while according to our model not only capital replaces labor, but the production function changes with it. The second point is that the neoclassical model with fixed technology has already failed empirically in trying to explain the differences between Europe and the US. This is the main point in the Acemoglu (2003a), where he shows that the differences in skill premia in Europe and the US cannot be fully explained by the differences in labor supplies and in various regulations, and there must be difference in technology as well. Our own analysis supplies additional support to this result.

4.4. Acemoglu (2003a) Residual Rent Explanation

As already mentioned in the introduction, at the end of his paper Acemoglu (2003a) raises a similar hypothesis to ours, namely that labor regulation in Europe biased technology toward less-skilled. The explanation he offers is quite different than ours and is based mainly on the assumption that employers and workers share rents in their wage-setting. Hence, a technological innovation usually increases the rent and leads to higher wages and to higher profits as well. But if wages are not negotiated and instead are set by some labor regulation, like minimum wages, the residual rent from an innovation is not shared between the employer and the workers, but goes completely to the employer. Since such minimum wages apply mainly to unskilled labor, that makes the employer more willing to adopt innovations that increase productivity of unskilled workers. We offer a very different explanation, which is based on a general theory of technology adoption. It applies to competitive wage setting and
to all types of labor market regulations. We also supply some preliminary empirical support to our theory.

5. Some Empirical Evidence

In this section we review some empirical evidence that supports the implications of our model. Part of it is gathered from works by others and part is added by us. The evidence is drawn mostly from comparisons between the US and Continental Western Europe (Europe in short).

5.1. Labor Market Regulation and Wage Compression

Up to the mid-seventies unemployment was lower in Europe than in the US and Europeans were working longer hours. After that everything changed: unemployment increased and remained much higher in Europe than in the US and hours worked per person fell in Europe while they remained roughly constant in the US. What happened? The supply shocks of the seventies were accompanied by wage moderation in the US, while in Europe strong unions imposed real wage growth. At the same time European governments continued with the policies that began in the late sixties, of introducing and then reinforcing a host of labor market regulations such as binding minimum wage laws, firing costs and unemployment subsidies often unrelated to job search. As convincingly shown by Blanchard and Wolfers (2000), the interaction of this kind of labor institutions and those macroeconomic shocks generated persistent unemployment. Alesina, Glaeser and Sacerdote (2005) also discuss how union policies led to reduction of working hours for those who remained at work.

22 Alesina Glaeser and Sacerdote (2005) calculate that about one third of difference in work hours per person between France and Germany on one side and the US on the other is due to higher participation in the labor force in the US. Comparing US and Italy the same factors (labor force participation) explain more than half of the difference in work hours. Additional factors explaining lower work hours are marginal tax rates (Prescott (2004)) and preferences for leisure (Blanchard (2004)).
Rogerson (2007) offers two additional explanations to the reduction of working hours, one is higher taxation and the other is difference in technology, as Europe specializes much less in services than the US. These explanations fit nicely within our approach, since we claim that different regulation and taxation also lead to differences in technology adoption. In another related paper Rogerson and Wallenius (2007) find that the differences in employment between the US and Europe are mainly for the young and older workers. This finding also fits our framework where the workers with lowest efficiency are not working due to various labor regulations.\(^{24}\)

In the eighties and the nineties Europe and the US diverged also in their wage gaps between skilled and unskilled.\(^{25}\) As Blau and Khan (1996, 2002) document the ratio of wages in the 50-10 deciles increased in those years in the US by 13 per cent for men and by 18.6 per cent for women. In Europe it increased only by 4 and 3 per cent respectively. In their study Blau and Kahn (2002) conclude, after controlling for many other factors, that union policies and labor market regulations were crucial in explaining the difference in wage dispersion on the two sides of the Atlantic.\(^{26}\)

5.2. Differences in Capital Intensity

In this sub-section we present some observations that support our claim that there are difference in technology between the US and Europe along the skill line, and that these differences are reflected in differences in capital intensities.

5.2.1. Capital Labor Ratios

Blanchard (1997) notes that after the shocks of the seventies European firms shifted to labor saving technologies, which increased the capital labor ratio and after a period of adjustment, also raised profits. From 1980 to the late nineties capital-labor ratios have been increasing steadily and sharply in Continental Europe, while they have been quite stable in Anglo-Saxon economies, as shown in Figure

\(^{24}\) See also Glyn (2007) for an empirical discussion
\(^{25}\) See Katz and Murphy (1992) for early work on relative supply of skilled versus unskilled labor.
\(^{26}\) See also Gottschalk and Smeeding (1997) for a discussion of wage dispersion in OECD countries.
3. Caballero and Hammur (1998) report a positive correlation between the capital labor ratio and the degree of labor protection in OECD countries.

This evidence does not distinguish between low killed and high skilled sectors. To do that we turn to the European Union report edited by O’Mahoney and van Ark (2003). This report, which compares productivity between Europe and the US, uses data from the OECD and from work done in the Groningen Growth and Development Center. The study shows indeed that productivity and capital intensity vary by sector across the two regions. This study compares the levels of capital per hour worked at 2000, relative to total economy ratios, between the US and four European countries: France, Germany, Netherlands, and UK. The report divides sectors to four levels of skill: high, high intermediate, low intermediate and low. Taking only the high and low skill sectors and avoiding the public sectors we summarize the comparison in Figure 4.\(^{27}\) Clearly all high-skill sectors in the US use relatively more capital per labor than in Europe. Also, most low-skill sectors in Europe use more capital per labor than in the US, except for Agriculture and mining. Note that these two sectors are also geography dependent. Since the US is land abundant relative to the major European countries this can explain the high capital to labor ratio in these sectors. In general, these results support the main claim of our theory.

5.2.1. Capital Output Ratios

Another variable that should be examined with respect to our theory is the capital output ratio in skilled and in unskilled sectors. Remember that from equations (19) and (20) we get that this ratio in the skilled sector is

\[
\frac{K_s}{Y} = f, \frac{\alpha}{R}.
\]

and in the unskilled sector it is

\(\text{27 This figure is based on Tables II.6 and II.9a in O’Mahoney and van Ark (2003).} \)
\[
\frac{K_n}{Y} = f_n \frac{1-\alpha}{R}.
\]

Hence, comparing capital output ratios across countries enables to compare the degrees of skill-biased and unskilled-biased technologies. A word of caution applies. Capital usually includes not only machines and equipment, which are the focus of our model, but also structures, which could differ across countries due to many reasons, like land abundance.

With this in mind we have assembled data on capital in the skilled and unskilled sectors in the US and in Europe with special emphasis on the three largest Continental European countries: Germany, France and Italy. The data for the European countries are from the OECD, while the data for the US is from the BEA, as the OECD Stan data do not contain capital amounts for the US.\(^28\) We divided (in a rough manner) sectors between skilled and unskilled according to the share of skilled professions, where a sector with more than 50% skilled is defined as skilled.\(^29\) We then sum up net capital stocks in both types of sectors to get \(K_s\) and \(K_n\).

Figure 5 presents the ratios of capital to output in the skilled sectors in our four countries: US, France, Germany, and Italy. It shows that the level of technology in these sectors was higher in the US than in the European countries, except for Germany. Figure 6 shows the ratios of capital to output in the unskilled sectors and it clearly shows that unskilled biased technology in the US is below the European countries in recent decades. Furthermore, the two figures show that while skill-biased technology increased in the US in recent decades, unskilled-biased technology declined significantly at the same time.

Dividing all sectors to low and high skilled may be problematic, due to the many intermediate sectors, so it may be useful to look at more specific sectors, mainly at those where the definition is

\(^{28}\) The two data sets differ in their sector qualification, as the BEA data follow NICS while the OECD data follow SICS. We have matched the two data sets together.

\(^{29}\) The classification of sectors to skilled and unskilled is done by BLS data for 1989 and 1990.
more likely to be accurate. When dealing with specific sectors, which are relatively small we look at the ratio of capital to value added at the sector rather than country output Y, to control for differences in relative size of sector. Note that from equations (19) and (20) we get that the ratios of capital to value added in the two sectors are $K_s / P_s = f_s / R$ and $K_n / P_n = f_n / R$. Hence, these ratios provide good signals to the state of technology in a sector.

We focus first on two sectors, which are very low skilled, according to all sources: textile and other community, social and personal services. Figure 7 shows that the ratio of capital to value added in these sectors is higher in continental Europe than in the US. The same results would apply if we focus only on the three largest economies France, Germany and Italy. On the other end of the skill ladder are the computer sector and the education sector, which are clearly high skilled. They indeed have higher capital to value added ratio in the US relative to continental Europe, as displayed in Figure 8. The two biggest sectors that are more intermediate but are still classified by O’Mahoney and Van Ark (2003) as LIS (less intermediate skilled), are construction and the retail and wholesale sectors (where retail has slightly lower skills than wholesale). Figure 9 shows that the capital to value added ratio in these sectors are higher in Europe than in the US. Glyn et al. (2007) examine in detail the service sectors in the US and in Europe and show that the capital labor ratio in retail relative to the capital labor ratio in manufactirung was 0.34 in the US, 0.43 in France and 0.56 in Germany. Thus, the low skilled retail sector is relatively more capital intensive in france and germany than in the US. The same authors state that “in the US…in retail the least skilled are overrepresented while in France and Germany they are underrepresented.” They also find that in the eighties and nineties these divergent trends have been especially striking between France and the US.

30 See O’Mahoney and Van Ark (2003) for various sources to the skill taxonomy.
31 We should caution that since most education is public it might not always react to market prices. Figure 7 implies that it does with respect to input prices.

5.3 Innovations

We next look at some direct evidence on technology adoption. Comin and Hobijn’s (2004) data set contains information on adoption of some technologies by 24 countries over the last 215 years. We compare US to France, Germany and Italy, the three largest Continental European countries. For most of the technologies in the data set it is unclear whether they are low skill or high skill labor saving, but for two cases we feel pretty confident. Figures 10 and 11 show the patterns of adoption of personal computers and of industrial robots in these countries. One could safely argue that computers substitute (and complement) high skill labor while robots substitute for low skill labor. The figures show that there are significantly more PCs per capita in the US than in the three European countries while there are significantly more robots per capita in the three European countries.

Finally, additional evidence consistent with our theory is presented in Lewis (2005). Using plant level data, he shows that the degree of adoption of automation technologies (thus of capital intensity) is higher in US cities that have received less immigration of low skill workers. He even uncovers de-adoption of automation technologies in cities that receive an especially large influx of low-skill immigrants.

5.4 Job Creation

One implication of our argument is that the ratio of high skilled jobs created in Europe relative to low skilled jobs should be higher than in the US. Pissarides (2006) indeed finds that until very recently job creation in Europe was sluggish in the low-skilled service sectors, where most job creation has occurred in the US and UK.33 Pissarides (2006) concludes that European countries have been successful at creating jobs in the “knowledge sectors” ... but unsuccessful at creating them in “labor

33 See also Rogerson (2007) for a discussion of the sluggish growth of the service sector in Europe versus the Us and its effects on hours worked.
intensive…sectors,” which is exactly one of the implications of our model.34 His paper also shows a strong negative correlation between the level of labor market regulations and job creation in low skilled community service jobs (Figure 6 of Pissarides (2006)).

In recent years a few continental European countries such as France and especially Italy and Spain have introduced entry level temporary labor contracts outside of the tightly regulated primary market. The results have been immediate: job creation has jumped up, especially in Spain and Italy, for jobs using these types of contracts. Boeri and Garibaldi (2007) document in detail how after the partial labor market reforms of the late nineties that introduced temporary contracts available to employers outside of the tightly regulated primary market, employment in these countries increased dramatically, despite a relative low GDP growth. Europe went from jobless growth to job creation with low growth. In table 1 of their paper Boeri and Garibaldi (2007) document how the rapid growth of employment since these labor reforms in six continental European countries was almost exclusively driven by temporary contracts and not in the primary labor market. Since the late nineties Spain created 3 million of these types of jobs, about 30 per cent of the labor force. Call centers and a variety of others low skilled occupations have started to appear very recently in Continental Europe as well.

6. Conclusions

After the seventies’ the performance of labor markets in Europe and in the US departed significantly in many aspects. In the US labor markets further deregulated and the US experienced a sharp increase in wage inequality, a stagnation of real wages for low skilled work, low unemployment and stability of hours worked per person. In Europe, on the contrary, labor regulation increased in the aftermath of the early seventies’ shocks. Unions’ policies targeted defending wages by imposing binding minimum

34 See Table 4 of Pissarides (2006) for evidence.
wage laws and similar regulations. The result has been higher and persistent unemployment, lower hours worked per person and a much more equal wage distribution.

This paper shows how these developments in relative wages also influenced technology adoption in the two places. Lower wage gaps in Europe have led firms to switch to labor saving technologies at the low end of the skill distribution. Hence, low skilled labor has been substituted away by machines in Europe more than in the US. Meanwhile, opposite development occurred at the US, where higher skilled wages encouraged skill biased technical change much more than in Europe. Obviously various exogenous developments in science and technology, like the invention of computers, have played an important role as well, but we claim that the speed of adoption and of adjustment to new technologies depends on labor market regulations and policies.
Appendix

Derivation of the Goods Market Equilibrium Condition

The first order condition for each intermediate good in the skilled sector is:

\[(A1) \quad p_s(i) = P_s \frac{\partial S}{\partial s(i)} = \frac{P_s S}{s(i)}.\]

Equating this demand price with the supply price in equation (8), deriving \(s(i)\) and then substituting in the production function of the skilled good (3) we get:

\[
\log S = a + \frac{1}{f_s} \int_0^1 \log \left(\frac{P_s S}{p_s(i)} \right) di = a + \log S + \log P_s - \frac{1}{f_s} \int_0^1 \log R \, di - \frac{1}{f_s} \int_0^1 \log w_i \, di =
\]

\[
= a + \log S + \log P_s - f_s \log R - (1 - f_s) \log w_s + \int_0^1 \log(1 - i) \, di.
\]

Using (6) and \(\int_0^1 \log(1 - i) \, di = -(1 - f_s) \log(1 - f_s) - f_s\) we get that the price of the skilled good is equal to:

\[(A2) \quad \log P_s = f_s + \log R - a.\]

In a similar way it is shown that the price of the unskilled good is

\[(A3) \quad \log P_n = f_u + \log R - a.\]

While these prices reflect the supply side, from the demand side prices satisfy the following first order conditions:

\[
P_s = \frac{\partial Y}{\partial S} = \alpha S^{-a} N^a, \quad \frac{\alpha Y}{S},
\]

\[
P_n = \frac{\partial Y}{\partial N} = (1 - \alpha) S^a N^{-a} = \frac{(1 - \alpha) Y}{N}.
\]

Substituting these first order conditions into the production function (2) we get the following constraint on the prices of the two goods:

\[(A4) \quad \alpha \log P_s + (1 - \alpha) \log P_n = \epsilon,
\]

where \(\epsilon\) denotes \(\alpha \log \alpha + (1 - \alpha) \log(1 - \alpha)\). Substitute (A2) and (A3) in (A4) and get:

\[\alpha f_s + (1 - \alpha) f_u = a + \epsilon - \log R.\]
This is the goods markets equilibrium condition.

Derivation of the Labor Market Equilibrium Conditions

The supply of employed skilled labor in efficiency units is equal according to (15) to:

$$\frac{L_s}{2} \left(1 - \frac{v^2}{T^2} \right).$$

The supply of unskilled labor is equal according to (14) to:

$$\frac{L_u}{2} \left(1 - v^2 \right).$$

The demand for skilled labor is equal to:

$$\int s(i) \, di = \int \frac{P_S S_i}{P_s} \, di = (1 - f_s) \frac{\alpha Y}{w_s} = \frac{\alpha R Y}{w_s^2}. $$

The demand for unskilled labor is equal to:

$$\int n(i) \, di = \int \frac{P_N N_i}{P_n} \, di = (1 - f_n) \frac{(1 - \alpha) Y}{w_n} = \frac{(1 - \alpha) R Y}{w_n^2}. $$

Equating the supplies and demands yields the equilibrium conditions (16) and (17).

Derivation of Expected Utilities

The ex-post utility of a person with net income j in first period of life is

$$2 + \frac{\rho}{1+\rho} \log j + \frac{\log R + (1+\rho)\log(1+\rho) - (2+\rho)\log(2+\rho)}{1+\rho}.$$

Hence, utility is a linear transformation of $\log j$. The expected log of income of a skilled worker before efficiency is realized is:

$$\int \log[vw_s(1-t)] \, de + \int \log[ew_s(1-t)] \, de = \log w_s + \log(1-t) + v - 1.$$

This proves equation (25). Ex-ante expected log income of skilled is calculated similarly.

Analysis of the Effect of Minimum Wages

Assume a similar model to the one in section 2, except for the following differences. First, all skilled workers have efficiency 1. Second, unskilled workers have the same distribution of efficiency as in the benchmark model, but a worker’s efficiency e is unknown both to the worker and to the employer. It
can be observed by the employer only if the worker is monitored and only a proportion \(m \) of workers is monitored. We also assume that unskilled firms are sufficiently large so that the distribution of workers’ efficiencies within each firm is the same as the aggregate distribution. Clearly, despite the different levels of efficiency unskilled workers are paid the same wage \(w_n \) due to asymmetry in information. Finally, assume that there is minimum wage regulation that sets the wage of unskilled to be at some ratio with the skilled wage:

\[(A.5) \quad w_n = g w_s.\]

To derive the equilibrium we look at an employer who uses unskilled labor to produce an intermediate good. The employer knows the efficiency of \(m \) of the workers and fires a worker with efficiency \(e \) if: \(e p_n(i) < w_n \). Hence, the upper bound for firing unskilled workers is \(E_n(i) \), which is equal to:

\[E_n(i) = w_n / p_n(i).\]

The unskilled workers who are left in production are therefore those who have higher efficiency or those who have not been monitored.

Next consider technology adoption. In the skilled sector technology depends on comparing the cost of machine production to the cost of a worker, which is also the cost of one efficiency unit. Hence, the technological threshold in the skilled sector is:

\[(A.6) \quad \frac{R}{1-f_s} = w_s.\]

In the unskilled sector a producer shifts to the industrial technology if the unit cost of producing by machines is lower than the average unit cost of producing by labor. Hence, the technology frontier at the unskilled sector is determined by:

\[(A.7) \quad \frac{R}{1-f_n} = \frac{m \int_{E_n(i)}^1 w_n de (1-m) \int_{0}^1 w_n de}{m \int_{E_n(i)}^1 w_n de + (1-m) \int_{0}^1 w_n de} = \frac{2}{1-m} \frac{w_n - m \frac{w_s^2}{p_n(i)}}{p_n(i)}.\]

To derive the equilibrium price of an unskilled intermediate good which is produced labor, note that profits are driven to zero by free entry. Hence price equals average cost and it follows from (A.7) that:

\[(A.8) \quad p_n(i) = \frac{w_n - m \frac{w_s^2}{p_n(i)}}{1-m} \frac{w_n}{p_n(i)}.\]

Solving (A.8) shows that the price is equal to: \(p_n(i) = p_n = x w_n \) where \(x \) is:
\[x = 1 + \sqrt{1 - m}. \]

Hence the technology frontier in the unskilled sector is described by:

(A.9) \[\frac{R}{1 - f_n} = x w_n. \]

Given that the ratio between the unskilled and skilled wages is \(g \) due to wage compression, we get:

(A10) \[f_s = 1 - g x (1 - f_s). \]

An increase in \(g \) reduces \(f_s \) and \(w_s \) and raises \(f_n \) and \(w_n \). Hence, the effect of labor force regulation on technical change is the same as in the benchmark model. Note that without minimum wage regulation the free market equilibrium wage ratio, \(L_e \) is given by:

\[L_n \left(1 - \frac{m}{x} \right) = \frac{1 - \alpha}{\alpha} \frac{L_s}{x^2 L_e^*}. \]

If \(g \) is higher than the equilibrium wage ratio, which is the case if it is effective, there are two types of unemployment of unskilled. There are \(m E_n = m/x \) fired workers, and there are also workers who are not hired at all, since the unskilled wage rate is too high.

Analysis of the Effect of Firing Costs

Assume that the model is similar to the benchmark model except for one difference. Individual efficiency \(e \) is unknown to the worker, but is observed by the employer on the job. Assume that an employer can fire a worker, but this act is costly and the firing costs are \(h \) in terms of the final good. Also assume that firms are sufficiently large so that the distribution of workers’ efficiencies within each firm is the same as the aggregate distribution. First note, that due to asymmetric information, both skilled and unskilled wages are equal for all workers, irrespective of efficiency. Consider next an employer who uses skilled labor to produce an intermediate good. Since the employer knows the efficiency of workers, he will fire those with efficiency \(e \) that satisfies: \(e p_s(i) - w_s < -h \).

Hence, the threshold for firing skilled workers \(E_s(i) \) is determined by:

(A.11) \[E_s(i) = \frac{w_s - h}{p_s(i)}. \]

The firing threshold in the unskilled sector is similar. It follows from (A.11) that to find the threshold for firing we need to find the equilibrium price of the intermediate good, which is produced by skilled
labor. Note that profits are driven to zero due to free entry and hence price equals average cost per unit produced, including firing costs:

\[p_s(i) = 2 \frac{(1 - E_s(i))w_s + E_s(i)h}{1 - E_s^2(i)}. \]

Together with (A.11) we get:

(A.12) \[p_s(i) = p_s = w_s + \sqrt{h(2w_s - h)}, \]

and:

(A.13) \[E_s(i) = E_s = \frac{w_s - h}{w_s + \sqrt{h(2w_s - h)}} = 1 - \frac{2h}{p_s}. \]

The results for unskilled goods are symmetric. Next, consider technology adoption. A producer shifts to industrial technology if the unit cost of producing by machines is lower than the average unit cost of producing by labor. Hence, the technological threshold is determined by:

(A.14) \[\frac{R}{1 - f_s} = p_s. \]

The technological threshold in the unskilled sector is similar and in a similar way to the benchmark model we can derive the same “goods market equilibrium condition” as condition (9) in the benchmark model. In the Skilled sector we get:

\[\frac{\alpha Y}{L_s} = \frac{\sqrt{2Rh} - h}{1 - f_s}. \]

The equilibrium condition in the market for unskilled labor is similar. Thus:

(A.16) \[\frac{\sqrt{2Rh} - h}{1 - f_s} = \frac{\alpha}{1 - \alpha} \frac{L_n}{L_s} \frac{\sqrt{2Rh} - h}{1 - f_n}. \]

This labor market equilibrium condition constitutes a positive relationship between \(f_n \) and \(f_s \). Hence, together with the “goods market equilibrium condition” it determines a unique general equilibrium, as can be described in a diagram similar to Figure 1. Using it we can show that a rise in firing costs \(h \) increases \(f_n \) and lowers \(f_s \).
References

Beaudry P. and F. Collard (2001) “Why has the Employment Productivity Trade off amongst Industrialized Countries so strong?” *NBER Working Paper*

Figure 3
Labor/Capital Ratio in “Continental” and “Anglo-Saxon” Countries
(Index, 1972=1)

Source: Own calculations, based on data from the OECD Economic Outlook, December 2005. The computation is based on Blanchard (1997, p. 96), following the codes that he kindly provided, and the sample of countries is essentially the same as in that paper. However, some differences are worth mentioning: 1- Updated data set; 2- Australia is excluded, due to lack of data necessary to compute the GDP of the business sector; 3- We start in 1972, so that the sample of countries is exactly the same in every year (some countries have missing data before that year); 4- Cross-country averages weight countries in proportion to 2000 GDP in PPP units. Anglo Saxon countries are: US Canada and UK; Continental are Austria, Belgium, Denmark, France, West Germany, Ireland, Italy, Netherlands, Spain, and Sweden.
Figure 4: Capital per Hour Worked, 2000, US and EU-4

a. Low-Skill Sectors

b. High-Skill Sectors
Figure 5

Ratio of Capital in Skilled Sectors to Output in US, France, Italy, and Germany

Source: OECD for France, Italy and Germany, BEA for the US.
Figure 6

Ratios of Capital in Low Skilled Sectors to Output in US, France, Italy and Germany

Source: OECD for France, Italy and Germany and BEA for the US.
Figure 7

Ratios of Capital to Value Added in Low Skilled Sectors in the US and Europe
Figure 8

Ratios of Capital to Value Added in High Skilled Sectors in the US and Europe
Figure 9

Ratios of Capital to Value Added in Low Intermediate Skilled Sectors in the US and Europe

- **Construction**
 - USA: Blue line
 - Europe: Red dashed line

- **Retail trade**
 - USA: Blue line
 - Europe: Red dashed line

- **Wholesale Trade**
 - USA: Blue line
 - Europe: Red dashed line

Year:
- 1980
- 1985
- 1990
- 1995
- 2000
- 2005

Value Added (ktva): 3, 4, 5, 6, 7, 8

ktva: Kilogram of Tons of Value Added
Figure 10
Personal Computers per capita
(in logs)

Source: HCCTA.
Figure 11

Industrial Robots as share of GDP
(in logs)

Source: HCCTA.