INNOVATION'S GOVERNANCE AND INVESTMENTS
FOR ENHANCING COMPETITIVENESS OF MANUFACTURING SMES

Nunzio Casalino - Stefan Ivanov - Toshko Nenov

ABSTRACT: To become innovative and competitive manufacturing contractors, SMEs have to be capable to supply manufacturers with advanced equipment, components, and tools for improved manufacturing and engineering operations. Besides, despite their foremost numbers and importance in job creation, traditionally SMEs encounter difficulty in obtaining formal credit or equity. Maturities of commercial bank loans extended to SMEs are often limited to a period far too short to pay off any sizeable investment. Many European governments and international financial institutions have tried to address the problems of high transaction costs and risks by creating subsidized credit programmes and/or providing loan guarantees. Such projects have often fostered a culture of non-repayment or failed to reach the target group or

* Nunzio Casalino is Associate Professor of Business Organization at Guglielmo Marconi University, Rome, Italy.
Stefan Ivanov is Associate Professor of Electrical Engineering and Electronics at Technical University of Gabrovo, Bulgaria.
Toshko Nenov is Full Professor of Electrical Engineering and Dean of the Faculty of Electrical Engineering and Electronics at Technical University of Gabrovo, Bulgaria.
Although the article is the result of joint observations of the three authors, the paragraphs 1, 2, 3, 4, 5, 7, 9 have to be attributed to Nunzio Casalino, while the abstract and the paragraphs 6, 8 have to be attributed jointly to Stefan Ivanov and Toshko Nenov.
achieve financial self-sustainability. Further, it tries to understand what are the main barriers for SMEs with respect to the realisation of their innovative potential and their capacity to improve internal processes by the adoption of innovative manufacturing techniques and a graduated organizational change. They are becoming particularly important for achieving greater productivity, lower operational costs, and higher revenues (usually characterized by reduced access to external finance, unavailability of wider distribution channels, low internationalization, etc.). The purpose of this article at last is to clarify how online training on automation and innovation fields can bring economic and organizational benefits. Innovative training contents can improve manufacturing knowledge of managers and employees, especially on industrial automation systems.

1. Finance has been identified in many business surveys as the most important factor determining the survival and growth of small and medium-sized enterprises (SMEs) in European countries. Access to finance easily allows SMEs to undertake productive investments to expand their businesses and to
acquire the latest technologies, thus ensuring their competitiveness and that of
the nation as a whole.

Poorly functioning financial systems can seriously undermine the
microeconomic fundamentals of a country, resulting in lower growth in income
and employment.

The current economic crisis has weakened the financial health of many
small and medium-sized firms (SMEs), especially in industries in which foreign,
low-cost producers have entered the market and are threatening the survival of
the existing competitors. In addition, new government regulations can change a
profitable SME niche business into an enterprise disaster in just a few weeks or
months. There have been significant debates about the impact of innovative
manufacturing techniques on economic performance\(^1\) and competitiveness in
general\(^2\), and on productivity, efficiency, and innovation in particular. The
diffusion of automation can produce new opportunities for SMEs. It overcomes
the concept of traditional organization, emphasizes the interdependence
between the organization of jobs and technology.

Notably, in seeking an explanation for the acceleration in productivity
and economic growth experienced in many industrialized countries, many
economists have looked at the development, application, and utilization of ICT
as a critical factor. Information and communication technologies, automation

\(^1\) See JOHN - SENBET, *Corporate Governance and Board Effectiveness*, New York University, USA 1983
and robotics are changing manufacturing processes in industry\(^3\). In parallel also on the scientific and vocational education level, the integration of different fields like mechanics, electronics and information technologies (mechatronics) is practiced since years. Nevertheless, many especially small enterprises have rather conservative approaches to new technologies and thereby miss many opportunities by utilizing improved technologies. SMEs need highly qualified staff, competent in operating with new machines and in managing sophisticated production processes. AutoMatic project addresses the problem of low or missing overview about possibilities offered by industrial automation systems. It adapts and develops an innovative approach and learning contents targeted specifically to SMEs to qualify staff on industrial automation systems\(^4\).

Hence, at the firm level, the expectations are of greater efficiency, lower costs, and access to larger and new markets, while governments see the application and use of ICT as generating higher productivity, and competitiveness. This paper tries to understand what are the main barriers for SMEs with respect to the realisation of their innovative potential and their capacity to create employment (reduced access to external finance, unavailability of wider distribution channels, low internationalisation, etc.). Moreover, as first argued by New Growth Theory\(^5\), the capacity of continuous

\(^3\) See BUTLER, A practical model for technology and innovation management, Portland International Conference on Management of Engineering and Technology, PICMET, 1, pp. 103 - 105, 1999.

innovation has become a key factor in the global competition of high-income regions in order to acquire the additional factors of production and the new value adding processes, which are necessary to keep an economy on a sustainable growth path. SMEs seem to be the ideal vehicle to promote both goals - sustainable innovation-based economic growth and employment creation - without trade-offs, given, as frequently assumed, the high flexibility as well as the relatively labour-intensive mode of production in SMEs. However, the issue as to how realistic these expectations are is anything but resolved.

Despite experience with a different number of SMEs’ promotion programmes, it is also still debated as to which specific policy measures are really suitable to guarantee undistorted competition by compensating firm-size specific disadvantages, such as the SMEs’ restricted access to public resources.

2. Many governments and international financial institutions have tried to address the problems of high transaction costs and risks by creating subsidized credit programmes and/or providing loan guarantees. Such projects have often fostered a culture of non-repayment or failed to reach the target group or achieve financial self-sustainability. On average, neither tax measures nor financial supports for R&D are perceived as sufficient to encourage SMEs and to improve manufacturing processes.6

Many enterprises highlight that existing tax measures discouraged them to engage in automation investments. A significant majority of SMEs support

the statement that taxation discouraged the adoption also other innovative placements. The majority of the SMEs confirm that public financial support was insufficient to support R&D, diffusion and uptake of information systems. These findings are consistent with other levels of satisfaction with government intervention in, amongst other things, innovation regulation.7

However, another correlation can be established, namely with GDP per capita and available public funds to support SMEs industrial policies, thus revealing material boundaries to proactive manufacturing policies. Accordingly, for the new EU member states in the survey, streamlining some of the EU structural funds towards innovation and stimulation of manufacturing will be highly appropriate in light of previous relevant experience. Use of international loans can also be an option although many of those are seen as too expensive in light of the financial capabilities of the countries at this stage. About 44 percent of the SMEs indicated that the current education system delivered adequately trained personnel to engage in innovative manufacturing usage and 28 percent stated that the system delivered inadequately trained personnel. Compared to existing staff skills and training of firm personnel, which for 69 percent of all firms appeared sufficient to support the uptake of ICTs, newcomers to the labour market still have a learning trajectory to go through. In all countries, the education system is positively evaluated as adequately preparing for production

usage by a significant but moderate majority of SMEs. Figures on education deviate from the traditional pattern with regard to the government’s role in promoting ICT. For obvious reasons, innovative public policies are not the only factor affecting this score, which is dependent on overall levels of pedagogical quality as well. Most of all the speed of response of the educational system in the surveyed countries is still insufficient to accommodate the dynamism and the requirements of the businesses. This stems, in part, from the weak relationship between the business and education and R&D communities. It is the obligation of the government to create an environment that stimulates this relationship and hence makes the educational system more adaptive and flexible to the requirements of the business.

National differences in the appreciation of production services as a stimulating factor for technologies’ adoption in the economy correlate relatively well with other governmental efforts to stimulate innovation. However, overall levels of appreciation are significantly lower than for other factors, indicating that the provision of online services is a relatively weak stimulus for the uptake of ICT services in the business community.

Programs to raise awareness of the utilization of manufacturing technologies in firms and innovative demonstration programs can give a strong contribute to improve automation usage. Almost 21 percent of all firms

indicated that private awareness raising and demonstration programs were not sufficient. In other words, they could be improved. Following this line of argument, the challenges that the EU is facing with regard to its basic economic and political foundations are arising at a time when stability in these areas is becoming an ever more important prerequisite for stimulating investment and encouraging innovation. The EU’s leaders need to continue their efforts to stabilize the political and economic macro environment in order to establish confidence and encourage investment. Yet this is only the first step; the EU must also succeed in addressing a number of challenges on the micro level. In today’s world, there are few “independent variables” or “autonomous players”. Rather, the competitive advantage of a country is dependent on multiple, interdependent factors – not least of which include its leaders’ ability to act on issue areas in a coordinated and collaborative fashion. Thus, the EU’s ability to address the challenges of establishing a stable political and economic environment, setting-up the appropriate framework conditions to in still confidence in the business environment, and catalysing innovation in the economy is dependent on a concerted effort of multiple actors, working across sectors or domains in a systemic, inclusive and transparent manner.

3. High administrative costs of lending or investing small amounts do not make SMEs’ financing a profitable business. As a result, commercial banks are
generally biased toward large corporate borrowers10, who provide better business plans, have credit ratings, more reliable financial information, better chances of success and higher profitability for the banks11. When banks do lend to SMEs, they tend to charge them a commission for assuming risk and apply tougher screening measures, which drives up costs on all sides. Many European governments and international financial institutions have tried to address the problems of high transaction costs and risks by creating subsidized credit programmes and/or providing loan guarantees. Such projects have often fostered a culture of non-repayment or failed to reach the target group or achieve financial self-sustainability.

Changing market conditions thus force smaller firms to adapt or reinvent their business through new technologies or unique value propositions. At the same time, small firms face several constraints in differentiating their products and changing their business model. A major liability is that small firms lack the required internal financial resources and technical capabilities. They therefore must collaborate with external partners to innovate successfully, to develop new sources of income, and to reach more profitable positions in the competitive landscape. Innovative manufacturing techniques adoption and organizational change are becoming essential for achieving greater industry productivity, lower operational costs, and higher revenues. The close correlation

11 See CAPRIGLIONE - CASALINO, Improving Corporate Governance and Managerial Skills in Banking Organizations, in International Journal of Advanced Corporate Learning (iJAC), vol. 7, no. 3, Austria, 2014.
between these dimensions of improved economic performance from ICT and organizational change12 corresponds well with findings from other studies on the impact of technologies on firm performance. It has thus often been argued that the effective utilization of information systems requires more horizontal organizational structures with greater levels of responsibility for the overall coordination of work placed on the individual employee. It also requires the implementation of clearer functional descriptions of tasks. All this often requires a complete re-shaping of the organizational structure of the firm where all aspects of the organizational development are consequently given attention13. Hence, it is important to note that the firms are going through a period of rapid modernization, emphasizing improved production processes and flexible organizations that can address the needs of the market, as part of transformations of the socio-economic fabric to a market-driven economy. This may in part explain why ICT is combined with other factors, such as new marketing strategies and organizational change. Today there is a strong need to collect more revealing data on technologies adoption and its impact on SMEs, the need for more rigorous analysis of how ICT investments and use affects innovation14, and the need for better understanding how this can translate into productivity increasing and enhancing competitiveness. How to correlate SMEs

in the internationalisation processes or whether they only function as suppliers in global value chains, dominated by large-scale transnational enterprises, is an open question. Without doubt, the current wave of internationalisation is accelerating the diffusion of innovation across industries. Yet it is unclear whether SMEs are driven by globalisation or whether they are a driving force in this process.

It is clear from many studies that a wide utilization of information systems is already having an impact on economic performance among firms. This is reflected in the findings on the impact of ICT on economic performance, where it is evident that ICT is a substantial contributor to productivity, profitability, and growth. Accordingly, a new marketing strategy is particularly relevant for translating the introduction and use of ICT into the improvement of profitability. This is mainly because the use of technologies together with new marketing initiatives enables firms to strengthen their position in existing markets or enter new markets, thereby improve profitability.

Manufacturing technologies is particularly important for lowering operational costs and increasing revenue. In addition to identifying the immediate impact of ICT on the economic performance of SMEs, it is possible to identify how firms use ICT to improve their future performance, namely through innovation. ICT is only a minor facilitator of innovation; it only becomes

16 See KAPLAN, Discontinuous innovation and the growth paradox, in Strategy and Leadership, USA, March–April, pp. 16 - 21, 1999.
powerful in combination with a number of other complementary factors. The main factors contributing to innovation in SMEs are:

- changes in salary structure;
- training of staff;
- capital investment in equipment;
- organizational change;
- new market strategy.

In most of the sectors surveyed, ICT contributes more to process innovation than to product and relational innovation\(^1\). The use of information systems is thus mainly for changes in production processes within the organization\(^2\), rather than the development of new products or the furthering of relationships especially with suppliers. It was demonstrated that relatively fewer firms report decreasing costs because of ICT. Automation is the adoption of control systems and ICT to reduce the need for human work in the production of goods and services\(^3\). In the scope of industrialization, automation is a step beyond mechanization. Whereas mechanization provided human operators with machinery to assist them with the muscular requirements of work, automation greatly decreases the need for human sensory and mental

requirements as well. Automation plays an increasingly important role in the world economy and in daily experience. Automation has had a notable impact in a wide range of industries beyond manufacturing (where it generally originated). In general, automation has been responsible for the shift in the world economy from industrial jobs to service jobs. The result has been a rapidly expanding range of applications and human activities. Design and manufacturing of products are important for information technology industry and can assist design, implementation, and monitoring of control systems.

4. Well-functioning and sustainable mechanisms for SMEs financing require institution building and a market approach. Lending institutions must improve their ability to provide financial services to SMEs through commercial mechanisms that lower costs and minimize their risk exposure. Only in this way will financial institutions find SME lending to be more profitable, and thus be encouraged to construct lending programmes targeted at SMEs.

There are also a number of trends in the financial services industry that are forcing banks22 to have a closer look at the SME markets. Globalization trends are increasing competition especially for servicing large corporate customers and driving down margins and fees. The improving liquidity of securities markets in many countries is increasingly providing large corporations direct access to the capital markets and allowing them to bypass financial intermediaries. Therefore, banks are under increasing pressure to expand their

business23 towards SME customers and to develop mechanisms to improve the profitability of lending to SMEs.

To compete effectively in the SME financing sector, banks need to provide financial services that meet the specialized needs of SMEs while coping with the high risks and costs associated with servicing them. To achieve this, an increasing number of banks24 have adopted separate strategies to service SME customers. The current trend is to shift from a product-based focus to a more customer oriented focus of providing packages of financial services tailored to their needs. This has the potential of considerably improving the banks’ relations with the SME sector, as well as increasing the profitability of providing financial services to it. The main initiatives undertaken by banks to support better the SME sector include25:

- reducing information asymmetry of SMEs and high perceived risks by using credit scoring systems; adopting reliable information providers and risk self-assessment for the SME entrepreneurs; assessing the level of risk; sharing risk with third parties; and setting up special support units for high risk customers such as the start-ups;

• reducing costs of lending by applying latest information technologies26; streamlining the organization and simplifying the lending process;
• developing products better adapted to SME’s needs;
• improving financial services for SMEs through training of bank staff and the segmentation of SME customers;
• cooperating with SME organizations and other business development providers in order to reduce risks and costs and combine financial with non-financial services.

5. As regards innovation transfer, Joseph Schumpeter is often mentioned as the first economist having drawn attention to the importance to it, defining five types of innovation ranging from introducing a new product to changes in industrial organization. The Oslo Manual clarified the definition of the two more technical definitions but still it appears that “innovation” is not easy to define precisely27. Some researchers gave approximately definitions28 on:

• Science: how to understand things;
• Technology: how to do things;
• Management: how to get things done;
• Creation: bringing into existence;
• Invention: devising something new or a new way to do things;

• Innovation: turning an idea into income.

The innovation is a science and explains what innovation and creativity means by these simple formulas\(^\text{29}\):

1. **Creativity = Idea + Action**

 By this, Archibald means that the “idea” is just the beginning to create something. People must do something to bring the idea and create something.

2. **Innovation = Creativity + Productivity**

 In real terms the sequence is: get an idea, test or prototype it, produce a finished item and bring it into use. In the case of artists, this corresponds to: get inspiration, sketch it, put it down on canvas, and finally exhibit the work. For many businesses, the ultimate goal is the idea to produce profit. In this case, innovation must come from ideas that lead to sales.

3. **Profitable Innovation = Innovation + Marketing**

 The innovation process is a combination of various activities starting from research but including design, market investigation, process development and may include organizational restructuring, employee development, etc. Innovation implies creativity and dynamism that will benefit the company and result in a higher standard of living. However, as a conclusion it must be kept in mind that measurement of innovation is very difficult. Technology transfer is the process by which existing knowledge\(^\text{30}\) and capabilities developed under public R&D funding are used to fulfil public and private needs. Besides an organization must become a learning organization and there must be a constant

and unstinting market focus. Market and learning orientation are less formal, less structured31, and less progressive in SMEs32. Learning-orientation “is a mechanism that directly affects a firm’s ability to challenge old assumptions about market and how a firm should be organized to address it”. SMEs have a natural advantage in that it is easier to create a learning environment in smaller organizations33.

Specifically, organizational learning is a workplace learning, which is a lower-level learning style involving the use of existing knowledge to enhance operation efficiency in SMEs34. To expand, a learning organization can be described as possessing:

- commitment to learning: the degree to which an organization values that which promotes a learning culture by believing that learning is key to improvement and competitive advantage;
- shared vision: an organization-wide focus on learning, or direction of learning that is evident across all levels of an organization;
- open-mindedness: willingness to critically evaluate the organization’s operational routine and to accept new ideas by continually judging the

quality of decisions35 and activities taken and perceptions about marketplace;
\begin{itemize}
 \item intra-organizational knowledge sharing: collective beliefs or behavioural routines related to the spread of learning among different units within the organization by having mechanisms for sharing lessons learned in organizational activities from department to department (unit to unit, team to team).
\end{itemize}

6. A new flexible production system involves many changes into firm’s organization chart with the increasing use of automation, often pointing out the problem of the lack of trained staff. Indeed, very few workers were able to actively practice with new technology. This structure has to be modern and efficient and its staff have to be extremely skilled. Staff has to use the best technology available at the moment in the market (PLC, systems’ controls, numerical controls, systems of distributed automation, industrial technologies, barriers of protection, etc.). The business structure must integrate and elaborate information coming from different sources, considering the operational needs of each firm.

As it regards the different business functions, they must be shaped so that results are accessible from this information. It is necessary to improve competences to allow solutions of personalized automation. We analyse in the detail the main competences. The technical person must also take care of the

management of the cars related to specific phases of the production trial and must verify the conformity of the result in comparison to the standards, affecting the necessary regulations and intervening on possible anomalies. The technical staff must be able to use the principal programming languages and application, developing the ability to work in team and for objective, using different methodologies, as for instance the project management. The principal occupations are assembled in the technical offices and in the centres of research and development36. Some unit profiles:

- the\textit{ technician}, in collaboration with administrative personnel, develops experimental researches using all necessary competences for the carrying out of the activities;
- the\textit{ engineer of trial} is the person who knows the trial that must be automated. In most cases, he coincides with the planner (mechanic) head;
- the\textit{ electric planner} designs the structure of the electric system that the cars and the different uses of the production trial;
- the\textit{ expert of field} defines typology, position and technical specifications of several sensors and essential actuators to check and watch the trial;
- the\textit{ planner of automatic controls} is traditionally also an expert of measures and covers the necessary competences of an expert of field. They define the control system architecture and the specifications;
- the\textit{ person responsible for maintenance} is another figure whose role is increasingly growing;

the person of maintenance of automation must know how to distinguish between corrective maintenance and improved maintenance.

Then the role of management, it is to improve the quality of the products, the flexibility, to reduce the times of production, to adjust laws and rules and to improve the use of the available resources\(^\text{37}\). This is possible by means of suitable choices of investment, actions of marketing and naturally through an adjusted plan of production. This last phase must be managed through a fit allocation of human resources and with the control of the productive trials making use of automation. As it regards the control of the production trials, the principal problem is the quick obsolescence of the firm’s products. The solution is therefore the use of flexible systems of production that develop, in an automatic way, different products. Therefore, we can distinguish three types of competences to recognize industrial automation:

- methodological competences. The figures have technical competences, tied to the routine of automation;
- technological competences. Methodological competences are realized in solutions implemented through technologies therefore technological competencies are necessary for those who are working with industrial automation;
- competences of trial. Automation requires knowledge\(^\text{38}\) on the trials to automatize. Rather, experience shows that the automation of a productive

trial often induces to find formal and general descriptions of the same process;

- **technological complexity.** Technological complexity should not be too far ahead of scientific understanding, as it would limit the commercial viability of the innovation by being too sophisticated for the end-user.

7. SMEs are generally resistant not only to training but also to other forms of wider participation. Generally, they also engage in less management development activities than larger firms. Their managers are much less likely to have formal appraisals or discussions on their training needs. SMEs must still provide the ability for managers to learn by experience, bringing their knowledge, skills and values into the workplace and putting them into practice. Inevitably, these resources are limited and sometimes inadequate. This can be potentially harmful for an organization, sacrificing the strength and consistency of its culture to achieve short-term gain.

AutoMatic project, titled “Development of curriculum and innovative training tools for industrial automation systems for people employed in SMEs” addresses the problem of low or missing overview about possibilities offered by industrial automation systems. It develops approaches and learning materials directed specifically to SMEs to qualify staff in terms of industrial automation

systems40. AutoMatic has been selected for co-financing under the Lifelong Learning Programme, Leonardo da Vinci, Transfer of innovation projects (Leonardo da Vinci Transfer of Innovation; ID LLPLINK: 2009-1-BG1-LEO05-01640). The project website is available on www.automatic-project.eu.

The topic of innovation is addressed twofold in the project AutoMatic. On the one hand, a new learning approach in the field of industrial automation addressing the needs of small companies is developed; on the other hand, innovation processes supported by information and communication technologies are directly addressed by one of the five modules included in the project and are subject of all modules.

\textbf{Figures 1 – 2) Some screenshots of the main pages with the training courses available in the Automatic Project website}

40 See CASALINO, An Innovative Model of Transnational Learning Environment for European Senior Civil Servants - Organizational Aspects and Governance, 11th International Conference on Enterprise Information Systems - ICEIS, Milan, Italy, INSTICC, pp. 148 - 153, 2009.
During the project has been developed an innovative training approach e-learning platform, several learning contents and specific simulation tools in the field of industrial automation systems, which are applicable in European SMEs. AutoMatic builds upon an existing approach developed in the pilot project “International Curricula of Mechatronics and Training Materials for Initial Vocational Training” for vocational schools developed by Tallinn Technical University, Estonia.

The project consortium is composed by:

- Gabrovo Technical University, Bulgaria - www.tugab.bg (project promoter and coordinator);
- ECQ - European Centre for Quality, Sofia, Bulgaria - www.ecq-bg.com (project coordinator);
- Tallinn University of Technology, Estonia - www.ttu.ee;
- LUISS Guido Carli University, Rome, Italy - www.luiss.it;
- Multidisciplinary European Research Institute, Graz, Austria - www.merig.org.

Target groups are practitioners in SMEs who intend to get an introduction and overview about industrial automation processes are the main target group of AutoMatic. The project also addresses students in vocational education as end users as well as teachers and trainers as intermediates. The developed products can support SME employees that want to improve their

qualification or re-qualify and need to increase their flexibility with respect to market demands and successful realization on the common labour market42.

Figures 3 – 4 Some screenshots of exercises and simulations available in the Automatic Project website

Between the results achieved, interactive training tools for industrial automation systems were developed. More specifically innovative curricula and the following 5 training modules targeted at SME management and staff:

- ICT Based Means for Automation and Innovation;
- Sensors in Industrial Automation;
- Actuators in Industrial Automation;
- Application of PLC in Industrial Automation;
- Industrial Networks and Interfaces in Automation Systems.

8. To understand the typology of the professional and specialized contents, follows a short description of the training modules:

The first module "ICT based means for automation and innovation" is dedicated to the managerial aspects of automation and innovations in small and medium enterprises. In it is given an analysis of their impact on SMEs and what are the main reasons to be used automation in the industry. The high flexibility of SMEs makes them the perfect companies, which via automation will achieve sustainable economic development based on innovation and job creation.

The training module "Sensors in Industrial Automation" presents basic knowledge about sensors used in automation systems. In this is given a classification of sensors separating them as temperature, force and mechanical stress, pressure, position, displacement, velocity and acceleration, flow, humidity and gas sensors. The requirements and the basic principles of sensors are also discussed.

The module "Actuators in industrial automation" describes different types of actuators used in automated systems. It is given a classification of these devices. The module includes information about the principle of operation of electric drives (converting electrical into mechanical energy, types of motors, the classes of protection), about the principle of electric frequency converters, soft starters, different motors and servos. There are presented electromagnetic actuators and solenoids with linear and rotational motion. It is given description about hydraulic and pneumatic actuators and different types of valves used in these devices. There is also review of industrial robots and examples of their use in the various fields of industry.
The main purpose of the module "Application of PLC in industrial automation" is to give basic knowledge about programmable logic controllers. Here is described the hardware components of the PLC, the existing types of PLC and the principle of their operation. It is given a review of PLC programming languages, structure of PLC programs, data types, variables addressing, the basic principles of Boolean logic and the corresponding Boolean logic functions. There are presented mathematical functions and functions for data conversion. In the module are observed different types of proportional-integral-differential (PID) controllers and their behaviours. At the end of the module are presented sample applications with the relevant PLC control programs and explained the main requirements how to be selected the proper PLC.

The module "Industrial networks and interfaces in automation systems" examines the utilization of standard interfaces and networks in automation systems. In the module are described the characteristics of modern control systems with network communication. Discussion in the text is mainly on types of communications networks, network models and topologies, physical and logical structure of the networks and the characteristics of industrial networks.

A special part also is dedicated to the specifications of several networks as Profibus, CAN, ControlNet, Ethernet and others.

The modules ICT Based Means for Automation and Innovation, Sensors, Actuators and the Application of PLC in Industrial Automation, as well as Industrial Networks and Interfaces in Automation Systems consist of text based materials interactive examples, exercises and a self-assessment tool. AutoMatic materials are designed to be used in course based training sessions, but at the
same time support individual learning. In AutoMatic platform was integrated a “virtual teacher” that speaks slowly, with a clear voice and a perfect intonation. Therefore, AutoMatic proposes an innovative approach for the training with a virtual teacher that holds the lessons, so that the distance training is combined with a similar direct contact.

AutoMatic platform also offers auto-evaluation forms through which the learners can verify the acquired knowledge level. Such forms, at the end of every subject, allow the worker to verify immediately the acquired knowledge through the portal. Four different sections were developed for each training module:

- training courses;
- exercises;
- self-assessment;
- links & references.

The learning tools and materials are available in 5 languages: English, Bulgarian, Estonian, German and Italian. The learning tools and materials are available on-line, on dvd and on traditional booklets.

To explore the link between innovation and efficient production in the SMEs, we conducted a multiple-case study using in-depth interviews with

representatives of SMEs to find commonalities and success factors. The main practical results arisen\(^{44}\) are the following:

- increased flexibility of SME employees who want to improve their qualification;
- increased motivation of target groups and their commitment for life-long learning and career planning;
- a good impact on the quality of vocational training and international cooperation in the area of industrial automation systems by providing time-saving and user-friendly approaches.

9. One of the principal ways to increasing the access of small businesses to formal financial services is to create conditions that encourage financial institutions to serve small businesses. The old unprofitable approach of providing limited services to a limited number of customers' needs to be replaced by a "mass-customized approach" that uses technology to increase the number of small business clients but at the same time reduces transaction costs, improves asset quality and broadens service offerings. The result is a business model that offers a complete set of financial services tailored to the needs of individual small business clients with an improved bottom-line contribution per customer, thus enhancing profits for banks.

Studies on the process of information technology acquisition\(^{45}\) clearly show that these systems go through several evolutionary stages. During this

development the priority in order to succeed doesn’t seem to be tied only to the acquisition process, but mainly to the paths of learning and organizational change46.

Experience suggests that these paths should be designed and carefully managed in order to allow the acquisition and effective use of ICT applications by the users and the whole enterprise. The traditional methodology for the training, in fact, results incomplete to furnish a suitable medium in the professional training field, because of dynamic and continuous changes in the ICT sector and the increasing demand of knowledge more and more in the quality field47. AutoMatic can really contribute to the success of the SMEs. The strategy is based on the creation of a system for the training that meets the distance learning with the traditional benefits; therefore, the two different methodologies are integrated. In fact, on one side, the distance statement is a comfortable method for the training of a vast entourage of people within automation, but on the other hand, many people does not believe in the effectiveness of such method of statement because of the lack of an instructor that mostly involves the trainees.

46 See CASALINO, Gestione del cambiamento e produttività nelle aziende pubbliche. Metodi e strumenti innovativi, pp. 1 - 201, Cacucci, Bari, Italy, 2008.

The professional contents developed for AutoMatic project can be used to improve the qualification of people working in small and medium enterprises, for retraining and achieving a greater flexibility on the labour market. They can also be used by students, consultants and professionals for their advanced training in all the fields related the manufacturing automation.

The research project activities included also the analysis of some indicators and specific key aspects that regard the current situation of automation and innovation culture in the European SMEs. These are:

- what is the current situation of quality aspects dissemination through on-line courses?
- how are the main models used and applied?
- what role can have national agencies or institutions, as the universities, on the diffusion of innovation culture or the implementation of automation for SMEs through both traditional and web-based learning?
- how organizational and cultural specificities affect automation implementation?

The importance of automation is increasing for the reason that lack of quality control and assurance systems, lack of accreditation and certification procedures, poor conformity marks, are still diffused. Such impediments are considered as major potential and unnecessary technical barriers to trade,

especially concerning international competitiveness and globalization50. It is important to underline that SMEs consolidated experiential capital51 have to meet rapidly and effectively the challenges of globalization and the new knowledge-driven economy aims.
